Copied to
clipboard

G = C32×SD32order 288 = 25·32

Direct product of C32 and SD32

direct product, metacyclic, nilpotent (class 4), monomial

Aliases: C32×SD32, C484C6, C8.3C62, D8.(C3×C6), (C3×C48)⋊6C2, C162(C3×C6), (C3×Q16)⋊5C6, Q161(C3×C6), (C3×D8).4C6, (C3×C6).45D8, C6.22(C3×D8), C24.28(C2×C6), C12.46(C3×D4), C2.4(C32×D8), C4.2(D4×C32), (C3×C12).143D4, (C32×Q16)⋊9C2, (C32×D8).3C2, (C3×C24).61C22, SmallGroup(288,330)

Series: Derived Chief Lower central Upper central

C1C8 — C32×SD32
C1C2C4C8C24C3×C24C32×Q16 — C32×SD32
C1C2C4C8 — C32×SD32
C1C3×C6C3×C12C3×C24 — C32×SD32

Generators and relations for C32×SD32
 G = < a,b,c,d | a3=b3=c16=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c7 >

Subgroups: 168 in 78 conjugacy classes, 48 normal (16 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C32, C12, C12, C2×C6, C16, D8, Q16, C3×C6, C3×C6, C24, C3×D4, C3×Q8, SD32, C3×C12, C3×C12, C62, C48, C3×D8, C3×Q16, C3×C24, D4×C32, Q8×C32, C3×SD32, C3×C48, C32×D8, C32×Q16, C32×SD32
Quotients: C1, C2, C3, C22, C6, D4, C32, C2×C6, D8, C3×C6, C3×D4, SD32, C62, C3×D8, D4×C32, C3×SD32, C32×D8, C32×SD32

Smallest permutation representation of C32×SD32
On 144 points
Generators in S144
(1 54 143)(2 55 144)(3 56 129)(4 57 130)(5 58 131)(6 59 132)(7 60 133)(8 61 134)(9 62 135)(10 63 136)(11 64 137)(12 49 138)(13 50 139)(14 51 140)(15 52 141)(16 53 142)(17 124 37)(18 125 38)(19 126 39)(20 127 40)(21 128 41)(22 113 42)(23 114 43)(24 115 44)(25 116 45)(26 117 46)(27 118 47)(28 119 48)(29 120 33)(30 121 34)(31 122 35)(32 123 36)(65 91 105)(66 92 106)(67 93 107)(68 94 108)(69 95 109)(70 96 110)(71 81 111)(72 82 112)(73 83 97)(74 84 98)(75 85 99)(76 86 100)(77 87 101)(78 88 102)(79 89 103)(80 90 104)
(1 81 30)(2 82 31)(3 83 32)(4 84 17)(5 85 18)(6 86 19)(7 87 20)(8 88 21)(9 89 22)(10 90 23)(11 91 24)(12 92 25)(13 93 26)(14 94 27)(15 95 28)(16 96 29)(33 142 70)(34 143 71)(35 144 72)(36 129 73)(37 130 74)(38 131 75)(39 132 76)(40 133 77)(41 134 78)(42 135 79)(43 136 80)(44 137 65)(45 138 66)(46 139 67)(47 140 68)(48 141 69)(49 106 116)(50 107 117)(51 108 118)(52 109 119)(53 110 120)(54 111 121)(55 112 122)(56 97 123)(57 98 124)(58 99 125)(59 100 126)(60 101 127)(61 102 128)(62 103 113)(63 104 114)(64 105 115)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 19)(18 26)(20 24)(21 31)(23 29)(25 27)(28 32)(33 43)(35 41)(36 48)(37 39)(38 46)(40 44)(45 47)(49 51)(50 58)(52 56)(53 63)(55 61)(57 59)(60 64)(65 77)(66 68)(67 75)(69 73)(70 80)(72 78)(74 76)(82 88)(83 95)(84 86)(85 93)(87 91)(90 96)(92 94)(97 109)(98 100)(99 107)(101 105)(102 112)(104 110)(106 108)(114 120)(115 127)(116 118)(117 125)(119 123)(122 128)(124 126)(129 141)(130 132)(131 139)(133 137)(134 144)(136 142)(138 140)

G:=sub<Sym(144)| (1,54,143)(2,55,144)(3,56,129)(4,57,130)(5,58,131)(6,59,132)(7,60,133)(8,61,134)(9,62,135)(10,63,136)(11,64,137)(12,49,138)(13,50,139)(14,51,140)(15,52,141)(16,53,142)(17,124,37)(18,125,38)(19,126,39)(20,127,40)(21,128,41)(22,113,42)(23,114,43)(24,115,44)(25,116,45)(26,117,46)(27,118,47)(28,119,48)(29,120,33)(30,121,34)(31,122,35)(32,123,36)(65,91,105)(66,92,106)(67,93,107)(68,94,108)(69,95,109)(70,96,110)(71,81,111)(72,82,112)(73,83,97)(74,84,98)(75,85,99)(76,86,100)(77,87,101)(78,88,102)(79,89,103)(80,90,104), (1,81,30)(2,82,31)(3,83,32)(4,84,17)(5,85,18)(6,86,19)(7,87,20)(8,88,21)(9,89,22)(10,90,23)(11,91,24)(12,92,25)(13,93,26)(14,94,27)(15,95,28)(16,96,29)(33,142,70)(34,143,71)(35,144,72)(36,129,73)(37,130,74)(38,131,75)(39,132,76)(40,133,77)(41,134,78)(42,135,79)(43,136,80)(44,137,65)(45,138,66)(46,139,67)(47,140,68)(48,141,69)(49,106,116)(50,107,117)(51,108,118)(52,109,119)(53,110,120)(54,111,121)(55,112,122)(56,97,123)(57,98,124)(58,99,125)(59,100,126)(60,101,127)(61,102,128)(62,103,113)(63,104,114)(64,105,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,19)(18,26)(20,24)(21,31)(23,29)(25,27)(28,32)(33,43)(35,41)(36,48)(37,39)(38,46)(40,44)(45,47)(49,51)(50,58)(52,56)(53,63)(55,61)(57,59)(60,64)(65,77)(66,68)(67,75)(69,73)(70,80)(72,78)(74,76)(82,88)(83,95)(84,86)(85,93)(87,91)(90,96)(92,94)(97,109)(98,100)(99,107)(101,105)(102,112)(104,110)(106,108)(114,120)(115,127)(116,118)(117,125)(119,123)(122,128)(124,126)(129,141)(130,132)(131,139)(133,137)(134,144)(136,142)(138,140)>;

G:=Group( (1,54,143)(2,55,144)(3,56,129)(4,57,130)(5,58,131)(6,59,132)(7,60,133)(8,61,134)(9,62,135)(10,63,136)(11,64,137)(12,49,138)(13,50,139)(14,51,140)(15,52,141)(16,53,142)(17,124,37)(18,125,38)(19,126,39)(20,127,40)(21,128,41)(22,113,42)(23,114,43)(24,115,44)(25,116,45)(26,117,46)(27,118,47)(28,119,48)(29,120,33)(30,121,34)(31,122,35)(32,123,36)(65,91,105)(66,92,106)(67,93,107)(68,94,108)(69,95,109)(70,96,110)(71,81,111)(72,82,112)(73,83,97)(74,84,98)(75,85,99)(76,86,100)(77,87,101)(78,88,102)(79,89,103)(80,90,104), (1,81,30)(2,82,31)(3,83,32)(4,84,17)(5,85,18)(6,86,19)(7,87,20)(8,88,21)(9,89,22)(10,90,23)(11,91,24)(12,92,25)(13,93,26)(14,94,27)(15,95,28)(16,96,29)(33,142,70)(34,143,71)(35,144,72)(36,129,73)(37,130,74)(38,131,75)(39,132,76)(40,133,77)(41,134,78)(42,135,79)(43,136,80)(44,137,65)(45,138,66)(46,139,67)(47,140,68)(48,141,69)(49,106,116)(50,107,117)(51,108,118)(52,109,119)(53,110,120)(54,111,121)(55,112,122)(56,97,123)(57,98,124)(58,99,125)(59,100,126)(60,101,127)(61,102,128)(62,103,113)(63,104,114)(64,105,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,19)(18,26)(20,24)(21,31)(23,29)(25,27)(28,32)(33,43)(35,41)(36,48)(37,39)(38,46)(40,44)(45,47)(49,51)(50,58)(52,56)(53,63)(55,61)(57,59)(60,64)(65,77)(66,68)(67,75)(69,73)(70,80)(72,78)(74,76)(82,88)(83,95)(84,86)(85,93)(87,91)(90,96)(92,94)(97,109)(98,100)(99,107)(101,105)(102,112)(104,110)(106,108)(114,120)(115,127)(116,118)(117,125)(119,123)(122,128)(124,126)(129,141)(130,132)(131,139)(133,137)(134,144)(136,142)(138,140) );

G=PermutationGroup([[(1,54,143),(2,55,144),(3,56,129),(4,57,130),(5,58,131),(6,59,132),(7,60,133),(8,61,134),(9,62,135),(10,63,136),(11,64,137),(12,49,138),(13,50,139),(14,51,140),(15,52,141),(16,53,142),(17,124,37),(18,125,38),(19,126,39),(20,127,40),(21,128,41),(22,113,42),(23,114,43),(24,115,44),(25,116,45),(26,117,46),(27,118,47),(28,119,48),(29,120,33),(30,121,34),(31,122,35),(32,123,36),(65,91,105),(66,92,106),(67,93,107),(68,94,108),(69,95,109),(70,96,110),(71,81,111),(72,82,112),(73,83,97),(74,84,98),(75,85,99),(76,86,100),(77,87,101),(78,88,102),(79,89,103),(80,90,104)], [(1,81,30),(2,82,31),(3,83,32),(4,84,17),(5,85,18),(6,86,19),(7,87,20),(8,88,21),(9,89,22),(10,90,23),(11,91,24),(12,92,25),(13,93,26),(14,94,27),(15,95,28),(16,96,29),(33,142,70),(34,143,71),(35,144,72),(36,129,73),(37,130,74),(38,131,75),(39,132,76),(40,133,77),(41,134,78),(42,135,79),(43,136,80),(44,137,65),(45,138,66),(46,139,67),(47,140,68),(48,141,69),(49,106,116),(50,107,117),(51,108,118),(52,109,119),(53,110,120),(54,111,121),(55,112,122),(56,97,123),(57,98,124),(58,99,125),(59,100,126),(60,101,127),(61,102,128),(62,103,113),(63,104,114),(64,105,115)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,19),(18,26),(20,24),(21,31),(23,29),(25,27),(28,32),(33,43),(35,41),(36,48),(37,39),(38,46),(40,44),(45,47),(49,51),(50,58),(52,56),(53,63),(55,61),(57,59),(60,64),(65,77),(66,68),(67,75),(69,73),(70,80),(72,78),(74,76),(82,88),(83,95),(84,86),(85,93),(87,91),(90,96),(92,94),(97,109),(98,100),(99,107),(101,105),(102,112),(104,110),(106,108),(114,120),(115,127),(116,118),(117,125),(119,123),(122,128),(124,126),(129,141),(130,132),(131,139),(133,137),(134,144),(136,142),(138,140)]])

99 conjugacy classes

class 1 2A2B3A···3H4A4B6A···6H6I···6P8A8B12A···12H12I···12P16A16B16C16D24A···24P48A···48AF
order1223···3446···66···68812···1212···121616161624···2448···48
size1181···1281···18···8222···28···822222···22···2

99 irreducible representations

dim11111111222222
type++++++
imageC1C2C2C2C3C6C6C6D4D8C3×D4SD32C3×D8C3×SD32
kernelC32×SD32C3×C48C32×D8C32×Q16C3×SD32C48C3×D8C3×Q16C3×C12C3×C6C12C32C6C3
# reps1111888812841632

Matrix representation of C32×SD32 in GL3(𝔽97) generated by

6100
010
001
,
3500
0610
0061
,
100
04487
01044
,
9600
010
0096
G:=sub<GL(3,GF(97))| [61,0,0,0,1,0,0,0,1],[35,0,0,0,61,0,0,0,61],[1,0,0,0,44,10,0,87,44],[96,0,0,0,1,0,0,0,96] >;

C32×SD32 in GAP, Magma, Sage, TeX

C_3^2\times {\rm SD}_{32}
% in TeX

G:=Group("C3^2xSD32");
// GroupNames label

G:=SmallGroup(288,330);
// by ID

G=gap.SmallGroup(288,330);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-2,1008,533,3784,1901,242,9077,4548,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^16=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^7>;
// generators/relations

׿
×
𝔽